Searching for new physics in liquid xenon time projection chambers

Brian Lenardo Wright Lab Seminar @ Yale University (virtually) March 24, 2021

Outline

1. Why is the universe full of matter (i.e. not just radiation)?

- The Standard Model and lepton number violation
- Searching for neutrinoless double beta decay
- The nEXO experiment and discovery potential
- Other science we can do with nEXO

2. What is the nature of dark matter?

- The dark matter problem and WIMPs
- Pushing to new parameter space with lower thresholds
- Enhancing sensitivity via the Migdal effect

The Standard Model

The Standard Model (SM):

- Defines fundamental particles, their symmetries, and their interactions
- Remarkable predictive power:

G. Gabrielse et al., Atoms (2019)

However, there are features of Nature which are not accounted for, including:

- Matter/antimatter asymmetry
- Dark matter
- Dark energy

What physics lies beyond the SM?

Matter/antimatter asymmetry

Why is there more matter than antimatter in the universe?

- Antigalaxies etc. ruled out by γ-ray astronomy
- Requires baryon/antibaryon asymmetry of ~10⁻⁹ in early universe

One possible solution: **leptogenesis**

- Something generates more lepton than antileptons in the early universe
- Lepton asymmetry is then converted to baryon asymmetry via tunneling

Some interesting hints from the neutrinos

Several experimental observations that don't quite fit in the standard model:

- Neutrinos oscillate between flavors
- Neutrino masses are non-zero

Some interesting hints from the neutrinos

Several experimental observations that don't quite fit in the standard model:

- Neutrinos oscillate between flavors
- Neutrino masses are non-zero
- Neutrino masses are *much* smaller than those of other fermions
- We've only ever seen left-handed neutrinos

Some interesting hints from the neutrinos

Brian Lenardo

Majorana mass term

Several experimental observations that don't quite fit in the standard model:

- Neutrinos oscillate between flavors
- Neutrino masses are non-zero
- Neutrino masses are *much* smaller than those of other fermions
- We've only ever seen left-handed neutrinos

Majorana mass term for neutrinos can accomodate all of these observations, in an "economical" way, while also implying that:

 $\nu = \overline{\nu}$

Brian Lenardo

Lepton number symmetry

Lepton number is conserved in all known Standard model processes

- Example: nuclear beta decay

Majorana neutrinos inherently violate lepton number

$$\nu = \bar{\nu}$$

Lepton number violation gives us an experimental observable to search for new physics

Lepton number violation provides information on the symmetry structure of beyond-the-Standard-Model physics

Double beta decay

Brian Lenardo

Wright Lab Seminar

Standard double beta decay $(2\nu\beta\beta)$

Brian Lenardo

Neutrinoless double beta decay $(0\nu\beta\beta)$

Interpreting the results of $0\nu\beta\beta$ searches

Interpreting the results of $0\nu\beta\beta$ searches

For a given nucleus, these can be calculated, e.g. with nuclear models

0vββ parameter space for light neutrino exchange

What drives the sensitivity of a $0\nu\beta\beta$ search experiment?

Brian Lenardo

Wright Lab Seminar

What drives the sensitivity of a $0\nu\beta\beta$ search experiment?

1. A lot of the BB isotope

What drives the sensitivity of a Ονββ search experiment?

- 1. A lot of the BB isotope
- 2. Ultra-low backgrounds

What drives the sensitivity of a $0\nu\beta\beta$ search experiment?

- 1. A lot of the BB isotope
- 2. Ultra-low backgrounds
- 3. Good energy resolution

What drives the sensitivity of a $0\nu\beta\beta$ search experiment?

- 1. A lot of the BB isotope
- 2. Ultra-low backgrounds
- 3. Good energy resolution
- 4. Signal/background discrimination capabilities

Liquid xenon time projection chambers (TPCs)

Dual-channel measurement Scintillation light + ionized charge

3-D position reconstruction for each energy deposition

Can fill with ¹³⁶Xe, a $0\nu\beta\beta$ candidate Detector medium = sample

Brian Lenardo

Wright Lab Seminar

Searching for $0\nu\beta\beta$ in a TPC

Addressing the challenges in $0\nu\beta\beta$ searches:

- A LOT of the $\beta\beta$ isotope (¹³⁶Xe)
 - Ton-scale LXe TPCs are already operating
 - Enrichment is straightforward
- Low, well-characterized backgrounds in MeV range (low radioactivity)
 - Very low intrinsic backgrounds
 - Excellent self-shielding reduces external radioactivity
- Good energy resolution
 - Combining charge and light can reach <1%
- Signal/background discrimination
 - Powerful position reconstruction and multi-site rejection to characterize and reject BG

nEXO: the next-gen Enriched Xenon Observatory

Search for $0v\beta\beta$ in a tonne-scale liquid xenon TPC

- Five tonnes (~10²⁸ atoms)
- Enriched to 90% in ¹³⁶Xe
- Q_{ββ} = 2.457 MeV

Designed for ultra-low backgrounds:

- Deep underground location
- Extensive shielding
- Meticulous materials screening

Goal: achieve a sensitivity to $0\nu\beta\beta$ that is two orders of magnitude beyond existing experiments (~10²⁸ yr halflife)

The nEXO collaboration

The nEXO TPC and signal readout

Prototyping and R&D

Bare strip charge readout tiles demonstrated using analog readout Jewell et al. JINST 13 (2018) Development of dedicated, cold ASIC electronics for nEXO ongoing

VUV-sensitive SiPMs are relatively new -- extensive R&D and characterization ongoing

- Photon detection efficiency, noise properties
 - Ostrovskiy et al., IEEE TNS 62 (2015) arXiv:1502.07837
 - Jamil et al., IEEE TNS 65 (2018) arXiv:1806.02220
 - Gallina et al., *NIM A* **940** (2019) arXiv:1903.03663

Testing of large-area readout underway @ Stanford

Energy resolution in liquid xenon

Require precise measurements of both scintillation and ionization signals:

nEXO readout designed to reduce noise in both channels, achieving <1% energy resolution at 0vββ Q-value

Particle-type discrimination in a TPC

Imaging capability of TPC can be used to separate signal from background

- ββ events are point-like in nEXO
- Background γ-rays will Compton scatter

Event classification in data analysis

- Binary single-site/multi-site separation is well-established
- Deep-neural-network discrimination for nEXO developed in simulation

Brian Lenardo

Wright Lab Seminar

Projecting nEXO's performance in simulation

Brian Lenardo

Wright Lab Seminar

Projected physics reach ca. 2018

- Neural-network-based signal/background discrimination

What else could we do with the nEXO detector?

Another possible signal: solar neutrinos

https://www.nationalgeographic.org/encyclopedia/sun/

Brian Lenardo

Wright Lab Seminar

Another possible signal: solar neutrinos

https://www.nationalgeographic.org/encyclopedia/sun/

Brian Lenardo

Wright Lab Seminar

Solar neutrinos and the metallicity problem

Solar composition of elements heavier than helium (a.k.a "metallicity") is not understood

- Measurements of photosphere favor low-metallicity
- Helioseismology favors high-metallicity interior
- Tension at the 4 σ level!

The sun provides a calibration for metallicity measurements of distant objects

- Calibrates temperature, age, etc. of stars and galaxies

CNO neutrino flux provides a direct measurement of heavy elements in the sun's core

First measurement in Summer 2020!

Article Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun

https://doi.org/10.1038/s41586-020-2934-0 The Borexino Collaboration

Borexino, Nature 587 (2020)

Detection technique

- Neutrino-electron scattering in 1kTon of liquid scintillator
- Incredible effort to reduce convection to mitigate ²¹⁰Bi backgrounds

Uncertainties in rate too large to provide solution to metallicity problem

Solar neutrino capture in liquid xenon

$$\nu_e + {}^{136} \operatorname{Xe} \rightarrow {}^{136} \operatorname{Cs} + e^{-}$$

Neutrino capture in xenon TPCs provides a new detection mechanism

- Provides direct neutrino energy measurement
- ¹³⁶Cs could be tagged via characteristic γ -rays

S. Haselschwardt, BL, P. Pirinen, J. Suhonen, Phys. Rev. D 102 (2020)

Brian Lenardo

Wright Lab Seminar

What will the gamma signals look like in NEXO?

Nuclear data in ¹³⁶Cs is sparse

Used nuclear shell model calculations predict level scheme

S. Haselschwardt, BL, P. Pirinen, J. Suhonen, Phys. Rev. D 102 (2020)

Tagging ¹³⁶Cs via gamma cascade

Delayed signal from predicted 3⁺ state could be easily resolved in time and position

Estimated background suppression factor ~ 10⁻¹⁰

 \rightarrow Estimated backgrounds <<1 ct in nEXO

S. Haselschwardt, BL, P. Pirinen, J. Suhonen, Phys. Rev. D 102 (2020)

What sort of impact can nEXO have?

Predicted to observe ~35 CNO neutrino events, with essentially no background

- Statistical uncertainties 2x smaller than Borexino
- Completely different systematics, provides independent verification
- Beyond nEXO, liquid xenon TPCs could become a precision tool for solar neutrino physics
 - New core temperature measurement via ⁷Be neutrino line shift?

Brian Lenardo

Wright Lab Seminar

Fermionic dark matter CC interactions

Fermionic dark matter can undergo absorption on nuclei via a new charged-current interaction with nuclei

 $\chi + {}^{136} \text{Xe} \rightarrow {}^{136} \text{Cs}^* + e^-$

Projections indicate that next-generation 0vββ experiments have competitive sensitivity

- Delayed coincidence tagging could enable **leading sensitivity with nEXO**

Precision measurements of $2\nu\beta\beta$ decay

Second-order corrections to nuclear matrix elements to spectral shape of ¹³⁶Xe $2\nu\beta\beta$ decay:

$$(T_{1/2}^{2\nu})^{-1} \simeq (g_A^{\text{eff}})^4 |M_{GT}^{2\nu}|^2 G_0^{2\nu},$$

$$\downarrow$$

$$(T_{1/2}^{2\nu})^{-1} \simeq (g_A^{\text{eff}})^4 \left| (M_{GT}^{2\nu})^2 G_0^{2\nu} + M_{GT}^{2\nu} M_{GT-3}^{2\nu} G_2^{2\nu} \right|$$

$$= (g_A^{\text{eff}})^4 |M_{GT-3}^{2\nu}|^2 \frac{1}{|\xi_{31}^{2\nu}|^2} \left| G_0^{2\nu} + \xi_{31}^{2\nu} G_2^{2\nu} \right|, \quad (2)$$

"While M_{GT} is sensitive to contributions from high-lying states in the intermediate odd-odd nucleus, for M_{GT-3} only the lowest-energy states are relevant due to rapid suppression in the energy denominator"

Precision Analysis of the 136 Xe Two-Neutrino $\beta\beta$ Spectrum in KamLAND-Zen and Its Impact on the Quenching of Nuclear Matrix Elements

A. Gando,¹ Y. Gando,¹ T. Hachiya,¹ M. Ha Minh,¹ S. Hayashida,¹ Y. Honda,¹ K. Hosokawa,¹ H. Ikeda,¹ K. Inoue,^{1,2} K. Ishidoshiro,¹ Y. Kamei,¹ K. Kamizawa,¹ T. Kinoshita,¹ M. Koga,¹² S. Matsuda,¹ T. Mitsui,¹ K. Nakamura,^{1,2} A. Ono,¹ N. Ota,¹ S. Otsuka,¹ H. Ozaki,¹ Y. Shibukawa,¹ I. Shimizu,¹ Y. Shirahata,¹ J. Shirai,¹ T. Sato,¹ K. Soma,¹ A. Suzuki, A. Takeuchi,¹ K. Tamae,¹ K. Ueshima,¹ H. Watanabe,¹ D. Chernyak,² A. Kozlov,² S. Obara,³ S. Yoshida,⁴ Y. Takemoto,⁵ A. Laketolin, K. Funkar, K. Cesmina, H. Walands, D. Chellyak, A. Kozov, S. Obak, S. Toshaka, F. takelhow, S. Umehara, K. Fushimi, S. Hirata, T. B. E. Berger, ²⁸ B. K. Fujikawa,²⁸ J. G. Learned, J. Maricic,⁹ L. A. Winslow,¹⁰ Y. Efremenko,²¹¹ H.J. Karwowski,¹² D. M. Markoff,¹² W. Tomow,¹¹² T. O'Donnell,¹³ J. A. Detwiler,²¹⁴ S. Enomoto,²¹⁴ M. P. Decowski,²¹⁵ J. Menéndez,¹⁶ R. Dvornický,^{17,18} and F. Šimkovic^{17,19,20}

(KamLAND-Zen Collaboration)

$2\nu\beta\beta$ spectral shape is sensitive to new physics

Brian Lenardo

Wright Lab Seminar

Brian Lenardo

Wright Lab Seminar

Prospects at TUNL

Triangle Universities Nuclear Lab (TUNL) has a neutron TOF beamline which is almost perfect!

- Previously used for (³He,n) experiments on ¹³⁶Xe
- Need to add γ-tagging to search for isomeric state

Measurements can start when COVID restrictions lifted

 Planning in progress with collaborators at LBL, UNC-Wilmington, Duke

Images from the thesis of D. Ticehurst (UNC)

Dark matter

Brian Lenardo

Wright Lab Seminar

WIMP dark matter

Weakly Interacting Massive Particles

- New neutral particle, beyond the standard model
- Weak-scale annihilation cross-section gives us the right amount of dark matter
- Expected mass ~1 GeV to 1 TeV, but not well constrained
- Could be observed via **elastic scattering with nuclei** in a low-background detector

The hunt for WIMPs today

Large mass + low backgrounds are key

Liquid xenon TPCs are most sensitive experiments for WIMP masses >10 GeV

Brian Lenardo

Wright Lab Seminar

The hunt for WIMPs in the next decade

Brian Lenardo

Wright Lab Seminar

Lowering the threshold in liquid xenon detectors

Dual-phase xenon detectors

- Electroluminescence in gas enables detection of **single ionization electrons**

Need to understand signals at low energies to estimate dark matter sensitivity

Ultra-low-energy nuclear recoil measurements

Create nuclear recoils in liquid xenon via elastic neutron scattering

- Monoenergetic neutrons (~600 keV)
- Tag scattering angle to determine recoil energy
- Measure ionization in custom-designed low-threshold xenon detector

Brian Lenardo

Wright Lab Seminar

The team

Lawrence Livermore National Lab:

Jingke Xu Sergey Pereverzev Adam Bernstein

Kareem Kazkaz

Tomi Akindele

UC Davis:

Daniel Naim Mani Tripathi

Duke/TUNL:

Connor Awe Long Li Sam Hedges Jay Runge Peibo An Phil Barbeau

Stanford:

Brian Lenardo Now at UC Davis:

Jimmy Kingston

Nuclear recoil ionization measurements

Brian Lenardo

Wright Lab Seminar

How low can you go?

New measurements allow robust DM sensitivity projections down to lowest possible threshold.

This sets the *ultimate* possible sensitivity to low-mass WIMP dark matter using LXe detectors.

BL et al., Phys. Rev. Lett. 123 (2019)

...but can we lower the threshold further?

The Migdal effect

Nuclear recoils can redistribute energy to the atomic electrons, resulting in ionization with some low probability

 Atomic relaxation will emit ~keV-scale X-rays

Trading rate for threshold

 Emission probability is small, but signals are visible above threshold

Brian Lenardo

DM limits using Migdal effect in LXe

Could we verify the Migdal effect?

Preliminary simulation work suggests that this may be possible with the LLNL prototype detector

Assumptions:

- Same configuration as ionization yield measurements
- Pulsed beam of very low energy neutrons (24 keV)

Simulation results so far

- Primary backgrounds from neutron capture γ-rays
- Need additional work to characterize other backgrounds from e.g. activation

Conclusions

Conclusions

- The standard model of particle physics is a landmark theory, but is incomplete
- Liquid xenon detectors are a powerful tool in the hunt for new physics
 - Low backgrounds and large masses enable extremely sensitive searches for $0\nu\beta\beta$ and WIMP dark matter
- The search for $0\nu\beta\beta$ with NEXO will push 100x further than current experiments, with significant discovery potential
 - May also provide new measurements of solar astrophysics and DM
- Liquid xenon TPCs have great promise in the search for WIMPs, and new results may enable reaching new, low-mass parameter space

Thank you!

Backup slides

Why double beta decay?

Effective field theory analysis for LNV operators up to dimension 9, for two processes:

0vβ⁻β⁻ decay

- $T_{1/2} > 1.06 \times 10^{26}$ years (KAMLAND-Zen)
- $\mu^{\text{-}}\!\!\rightarrow e^{\text{+}} \text{ conversion}$
 - R < 1.7 × 10⁻¹² (SINDRUM II)

Conclusion: 0vββ decay is generally the most sensitive probe of lepton number violation... *by far*

- Enhancement due to powers of energy transfer (Q) in the interaction
- Much larger "exposure" in 0vββ experiments compared to beam experiments

0	Operator	Λ [TeV]	$T_{0arphietaeta} R_{\mu^+e^+}$
\mathcal{O}_5	$(L\bar{H})(LH)(QH)d^c$	$6 \times 10^{4-5}$	$\begin{array}{l} \ln(2) (\frac{\sqrt{2}}{6r_{\nu}})^2 q^2 \frac{\lambda^2}{q^2} [(\frac{G_p}{\sqrt{2}})^2 \frac{1}{q^2} (\frac{y_{h} x^2}{(16\pi^2)^2})^2 + (\frac{v}{16\pi^2 \lambda^2} + \frac{v^3}{\lambda^2})^2]^{-1} \sim 10^{25} - 10^{27} \text{ yr} \\ \frac{1}{q} \frac{Q^6}{\Lambda^2} [(\frac{G_p}{\sqrt{2}})^2 \frac{1}{q^2} (\frac{y_{h} x^2}{(16\pi^2)^2})^2 + (\frac{v}{16\pi^2 \lambda^2} + \frac{v^3}{\lambda^2})^2] \sim 10^{-40} - 10^{-38} \end{array}$
\mathcal{O}_6	$(LH)(L\bar{H})(\bar{Q}H)\overline{u^c}$	$2 \times 10^{6-7}$	$\begin{array}{l} \ln(2) (\frac{\sqrt{2}}{6r_{\nu}})^2 q^2 \frac{\Lambda^{12}}{6^{11}} [(\frac{G_{\nu}}{\sqrt{2}})^2 \frac{1}{q^2} (\frac{y_1 e^2}{(16\pi^2)})^2 + (\frac{v}{(16\pi^2 \Lambda^2} + \frac{v^3}{\Lambda^2})^2]^{-1} \sim 10^{25} - 10^{27} \text{ yr} \\ \frac{1}{q} \frac{Q^6}{\Lambda^6} [(\frac{Q_{\nu}}{\sqrt{2}})^2 \frac{1}{q^2} (\frac{y_1 e^2}{(16\pi^2)})^2 + (\frac{v}{16\pi^2 \Lambda^2} + \frac{v^3}{\Lambda^2})^2] \sim 10^{-37} - 10^{-35} \end{array}$
\mathcal{O}_7	$(LH)(QH)(\bar{Q}H)\bar{e^c}$	$4 \times 10^{1-2}$	$\begin{array}{l} \ln(2) (\frac{\sqrt{2}}{6\nu})^2 q^2 \frac{\Lambda^2}{Q^{11}} [(\frac{G_F}{\sqrt{2}}) \frac{v}{(16\pi^2)^2} + \frac{v}{16\pi^2\Lambda^2} + \frac{v^3}{\Lambda^4}]^{-2} \sim 10^{22} - 10^{24} \text{ yr} \\ \frac{1}{q^2} \frac{Q^F}{\Lambda^2} [(\frac{G_F}{\sqrt{2}}) \frac{v}{(16\pi^2)^2} + \frac{v}{16\pi^2\Lambda^2} + \frac{v^3}{\Lambda^4}]^2 \sim 10^{-34} - 10^{-32} \end{array}$
\mathcal{O}_9	$(LL)(LL)e^{c}e^{c}$	$3 \times 10^{2-3}$	$\ln(2) \left(\frac{\sqrt{2}}{G_F}\right)^4 q^4 \left(\frac{16\pi^2}{y_{vF}}\right)^4 \frac{\lambda^2}{Q^{11}} \sim 10^{25} - 10^{27} \text{ yr}$

Berryman et al. Phys Rev D 95, 115010 (2017)

Estimating background contributions for nEXO

Essentially every material in existing design has been screened for radiopurity \rightarrow nEXO background model is conservative and data-driven

